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Abstract. Under two different constraints between the potentials and the eigenfunctions, 
the eigenvalue problem associated with the coupled Kdv hierarchy is nonlinearised to be 
a completely integrable C Neumann system on the tangent bundle of sphere TSN-’ with 
the Hamiltonian 

H*= -1 P ) - f ( q ,  q ) ( P ,  P ) + K ~ , P ) ’ + ~ ( ~ , P ) ( A P , P )  

and a completely integrable Bargmann system (R2N, dp A dq, H) with the Hamiltonian 

H =  - t ( A q , P ) + f ( P , P ) ( q , P ) - 4 ( 4 ,  9) 

respectively. The involutive solutions of the coupled Kdv equation associated with the two 
systems are given. 

1. Introduction 

It is an important task to search for new finite-dimensional completely integrable 
systems. A general method has been developed in [ 1,2,7], through which integrable 
systems are obtained by the ‘nonlinearisation’ of eigenvalue problems associated with 
given soliton hierarchies. 

Consider the eigenvalue problem 

L ( u ) + j  = A j 4 j  or ax+j  = M ( u ,  A j ) + j  (1.1) 
generally used in soliton theory. They are linear when the coefficient or potential u ( x )  
is given. In the case when u ( x )  is an N-soliton potential (Bargmann’s potential) or 
finite-band potential (the C Neumann’s potential), it can often be expressed as a 
polynomial or other elementary function of eigenfunctions + = . . , U =f(+); 
in addition, a constraint condition g( +) = 0 is satisfied in the Neumann case. Therefore, 
what the eigenfunctions actually satisfy is a system of nonlinear ordinary differential 
equations: 

L ( f ( + ) ) +  =U or a x +  = MU(+), A)+ (1.2) 
where A = diag(A,, . . . , A N ) ,  with the constraint condition g(+) = 0 in the Neumann 
case. 

It is interesting that (1.2) has been successfully verified to be a completely integrable 
system in the Liouville sense [ 6 ]  for quite a few eigenvalue problems associated with 
soliton hierarchies [ 1,2,7] .  The verification is not trivial in each case, where the inner 
structure of the eigenvalue problem and its isospectral equations is involved. 
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In the process of nonlinearisation of (1.1) into (1.2), a central role is played by the 
relation U =f(+), and the constraint g(+) = 0 in the Neumann case, which are difficult 
to obtain. A possible expression is suggested in [2], where U =f(+) and g(+) = 0 can 
be solved from 

respectively, in which G-, and Go are the first two Lenard gradients. Though our proof 
is not general, it does work for quite a few soliton hierarchies. 

In this paper we are going to investigate the coupled K d v  [3] (CKdv)  hierarchy, 
which is the isospectral hierarchy of the eigenvalue problem: 

(1.3) 

The nonlinearisation of (1.3) gives two kinds of finite-dimensional completely integrable 
systems, whose involutive solution is mapped into a solution of the c K d v  equation by 
the nonlinearisation relation (U, U )  =f(p, 4). 

Let the time evolution of the eigenfunction y of (1.3) obey the differential equation: 

The compatible condition for (1.3) and (1.4) gives the evolution equation: 

w = (U, U)' (1.5) W ,  = KG - A JG 

where the Lenard operator pair K, J are (a=a/ax) 

Consider the Lenard gradients Gj defined recursively by 

KG,..., = JGj j = - 1 , 0 , 1 , 2  , . . ,  
G-2 = (1, O)T G-, = (0 ,  1)'. 

Gj is a polynomial of U, v and their derivatives, which is uniquely determined if the 
constant terms aG-, + bG-, are agreed to be zero for j 2 0. Let 

m 

j = - ]  
G =  1 G. Am-' 

J - 1  

then (1.5) is reduced to the soliton equation: 

w, = JG, = KGm-,  . 
Xj = JGj is the c K d v  vector field, the first few being: 
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Let cj be constants, then 

w ,  = x, + c1x,-, +I  . . + c,xo 
is called the higher-order c K d v  equation. 

of (1.3). Denote the functional gradient 

V,,,,,h = ( S A / S u ,  SA/Sv)T 

Let Aj and y ( x )  = ( q j ( x ) ,  pj(x))' be the eigenvalue and the associated eigenfunction 

with regard to the bilinear form defined by the integral 

(5,.0)={ n h d x  

by VA for short, where CL is (-CO, CO) or (- T, T )  in the decaying at infinity condition 
or the periodic condition, respectively. We have: 

2. A completely integrable C Neumann system 

Consider the Neumann constraint (see [2]) 
N 

J = l  
G-l= VAj i.e. ( 4 , p ) = O  ( p , p ) = l  (2.1) 

where q = ( q l , .  . . , qN)', p = ( p l , .  . . , p N ) T ,  ( a ,  a )  denote the standard product in RN.  
By differentiating (2.1) with respect to x and using (l.l), we obtain 

U = (AP,  P )  v = (494) A=diag(A,, . . . , A N ) .  (2.2) 

The nonlinearisation of (1.3) under (2.2) yields the Neumann system (' = a/ax): 

where (2.4) and ( p ,  p )  = 1 imply (q,  p )  = 0 ,  which can be verified by substituting (2.4) 
into ( p ,  p ' )  = 0. 

Proposition 2.1. The functions defined by ( m  = 0, 1,2, , . .) 
Fo= -4(Aq, P>-3(4 ,  d ( P ,  P ) + k  P)*  

are in involution in pairs, that is the Poisson bracket (Fk, 4) = 0 in the symplectic 
space (RZN, dp A dq). 
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Proof. See [4,5]. 

Theorem 2.2. The system (RZN, dp  A dq, F,) is completely integrable in the Liouville 
sense. 

Discuss the Moser constraint on the tangent bundle 
TSN-' = {(p, 9) E RZN IF = (4, p) = 0, G =$((p, p )  - 1) = 0). 

Through direct calculations we have 

(F, F m  ) = 0 ( F , G ) = l  (F,, G) = -;(Am+'p, p). 

Thus the Lagrangian multipliers are 

Notice F=O on the tangent bundle TSN-', hence the restriction of the canonical 
equation of H* = Fo-pOF on TSN-' is 

~ ' = F O , p - P O F . l T S N - ~ =  -;Aq+;(AP,P)q-(q, 4)P 
p' = - Fo,q + poFq ITSN-L = ' ZAP + 4 - 4(AP, P>P (2.8) { (P ,P )= l  

which is exactly the Neumann system (C). 

Theorem 2.3. The Neumann system defined by (C) (TSN-', dp A dqlTSN-l, H* = Fo- 
poF) is completeIy integrable in the Liouville sense. 

Rooj  Let FZ = F, - p,F, m = 1,2, . . . , N - 1, then it is easy to verify that ( F f ,  FT) = 0 
on TSN-'. Hence {FZ} is an involutive system. 

Theorem 2.4. Let (4, p )  be a solution of the Neumann system (C), then U = (Ap, p), 
v = (q, q )  satisfy a stationary cKdv equation 

X N + a ( Y I X N - 1 + .  * . + ~ N x O = o  (2.9) 
with suitably chosen constants a l ,  . . . , c y N .  

Proof: Acting with the operator ( J - l K ) k  upon the first formula of (2.1), we get 
k + l  N 

(2.10) 

in view of (1.6), (1.8) and ker J = { a G - ,  + bG_,IVa, b} .  Consider the polynomial 
( P o =  1): 

Acting with the operator J I ; ~ N , ~  P N - k '  on (2.10), we have (2.9). 

P ( A )  = ( A  - A ] ) .  . . ( A  - A ~ )  = + P ,  A ~ - ' +  I . . + p N .  (2.11) 

3. Tbe ievolutive solution of the c K d v  equation associated with the Neumann system 

Consider the canonical system of the Fh, flow on the tangent bundle TSN-': 
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where I N  is the N x N unit matrix. Denote the solution operator of the initial-value 
problem by gk ,  then its solution can be expressed as 

Since any two FE, F? are involutive, we have [ 6 ] :  

Proposition 3.1. ( a )  Any two canonical systems ( F E )  and (FT) are compatible; ( b )  
the Hamiltonian phase flows g k ,  gj' commute. 

Denote the flow variables of (F: )  and (FZ) by x = t o ,  t = t,, respectively, and define 

The commutativity of gi;, g k  implies that there exists a smooth function of ( x ,  &,), 
which is called the involutive solution of the consistent system of equations (F:),  ( F Z ) .  

Theorem 3.2. Let (q (x ,  t m ) ,  p(x ,  tm))T be an involutive solution of the consistent system 
(PO*), (E) .  Let U ( X ,  t m ) = ( A ~ , p ) ,  V ( X ,  tm)=(q, 4 ) .  Then: 

(i)  the flow equations (Po*), (F:) are reduced to the spatial part and the time part, 
respectively, of the Lax pair for the higher-order c K d v  equation: 

(ii) u(x ,  t,), v(x ,  t,) satisfy the higher-order c K d v  equation 

( U f m ,  v J =  xm + c,x,-, +. . . + c,xo (3.4) 

Proof: From the expression (2.8), we see that (3.2) holds, from which it is easy to 
calculate that 

(A'-'q, p )  =f (Aj - 'p ,  p ) ' + f ~ ( A ' - ' p ,  p )  -i(A'p, p )  

('4'9, 4 )  = (A%, P>'+ V(AJP, P ) .  
In view of (2.6), (2.7), (3.5) and ( p ,  p )  = 1 ,  we have 

-Fm,q + PmFq 

(3.5) 

(3.6) 
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4. A completely integrable Bargmann system 

Consider the Bargmann constraint 
N 

Go= 1 VAj, i.e. 2.4 = (P, P), 21 = -(q, P). 
j = 1  

The nonlinearisation of (1.3) under (4.1) gives the Bargmann system 

(4.1) 

\ - I  

where the Hamiltonian function is 

H =  - 4 ( A 4 , P ) + 5 ( P , P ) ( q , P ) - f ( q ,  4). 

r k =  c - Let 
B: 

j = l  hk-Aj 
j #  k 

where Bkj =pk@-pjqk, we have (see [ l ,  4,5]) 

(4.2) 

(4.3) 
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Proof: Obviously ( E k ,  E , )  = O  for I =  k. Suppose k # 1, in virtue of (4.6), (4.7) and the 
property of Poisson bracket in (RZN, dp A dq),  we have 

4(Ek9 E f ) = - ( q , P ) ( r k ,  P : > + ( q , P ) ( r l ,  pZk)+(rk, q?)-(rl, qzk) 

+ A l ( r k ,  qlpl) - A k ( r f ,  qkPk)+(q,  p)p:(p2k, (9, p ) )  

P>P:(P:, (4, P)) -Pzk((4,  P), 9:) +P:((q,  P), q2k). (4.10) 

Consider a bilinear function Q2(& 7) on R N  and its partial-fraction expansion and 
Substituting (4.4) and (4.5) into (4.10) yields ( E k ,  E , )  = 0. 

laurent expansion: 

6 k 7 k  O0 

QZ(5, 7 ) w z - N - 1 t ,  7)= c -- - z-"-'(A'"[, 7). 
k = i Z - / \ k  m = O  

The generating function of r k  is (see [4 ,5] )  

Q z ( q i q )  Q z ( q , P )  = r k  

/ Q z ( P ,  4 )  Qz(p,p)l k = l  z -  A k '  

Hence the generating function of Ek is 

Theorem 4.4. The functions defined as follows are in involution in pairs, ( 4 ,  4) = 0, 

(4.11) p o - : ( ~ , P ) ( P , P ) - ~ ( ~ ,  -- q ) - $ ( A q , p )  

Moreover, 

Prooj Substituting the Laurent expansion of QZ into g, we have 9= X:=, 
On the other hand, expanding ( z - A k ) - l  as a power series in z - l ,  we get 

Thus Fm = 2,"=, A r E k ,  and the involutivity of { E k }  implies the involutivity of {Fm}. 

Theorem 4.5. The Hamiltonian system defined by the Bargmann system ( 4 . 2 )  ( R 2 N ,  dp A 

dq, H = po), is completely integrable in the Liouville sense. 

Theorem 4.6. Let (q ,  p )  be a solution of the Bargmann system (B), then U = ( p ,  p), 
= -(q, p )  satisfy a stationary c K d v  equation 

with suitably chosen constants a l , .  . . , a N .  
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ProoJ: Operating with ( J - ' K ) k  upon the first expression of (4.1), we have 
k N 

G k  + 1 C j G k - j - 1  + ~ k G - 2  = AjkVA, 
j = l  j = 1  

(4.14) 

by virtue of (1.6) and (1.8). Noticing the polynomial (2.11), we obtain (4.13) in a 
similar manner to the proof of (2.9). 

5. The involutive solutions of the c K d v  equation associated with the Bargmann system 

Consider the canonical system for the F,,,-flow g h  

Denote the flow variables of ( Fo) and (F,) by x = to and t = t , ,  respectively. Then the 
involutive solution of the consistent equations (Fo) and (F,): 

is a smooth function of ( x ,  t,) in view of the commutativity of the flows g ;  and g h  

Theorem 5.1. Let ( q ( x ,  t , ) ,  p ( x ,  t,))T be an involutive solution of the consistent system 
(Fo), (F,); let u ( x ,  t,) = ( p ,  p )  and u ( x ,  t , )  = -(q, p ) .  Then: 

(i) the equations ( F o ) ,  (F,) are reduced to the spatial part and the time part, 
respectively, of the Lax pair for the higher order c K d v  equation 

(5.2) 

(ii) u ( x ,  t,) = ( p , p )  and u ( x ,  t , )  = -(q, p )  satisfy the higher order c K d v  equation 

( 5.4) ( U  ,, , = x, + c1 x, - 2  + . . . + c, - 1 xo . 

ProoJ: Obviously (5.2) holds from (4.2) and (4.11). From the expressions (4.12) and 
(3.9, we have 

-t(hJ-lp, p ) ' - f u ( ~ j - l p ,  p )  
-(A'-'q, p ) ' -  u(A'-'p, p )  

0 

$(A'-'p, p)'+&(A'- 'p ,  p )  

m i l - j  
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Substituting (4.14) into (5.5) yields (5.3). Through direct calculations we have 

(Am+'P, P )  - U('\"P, P) + 2(A"q, P) 

= x, + c,x,-,+. . . + c,-1xo 
in view of (4.14). 
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